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Noise Analysis and Modeling

⚫ Circuit noise

◆ Interference noise

◆ Inherent noise

⚫ Interference noise

◆ Result from interaction between circuit and outside world or between 

different parts of circuit itself.

◆ Examples :

➢ Power supply noise on ground wires

➢ Electromagnetic interference between wires

◆ Can be reduced by careful circuit wiring or layout
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Noise Analysis and Modeling (Cont.)

⚫ Inherent noise

◆ Refers to random noise signals that can be reduced but never 

eliminated since this noise is due to  fundamental properties of 

circuits.

◆ Examples :

➢ Thermal noise and flicker noise

➢ Only moderately affected by circuit wiring or layout, such as 

using multiple contact to change resistance value of a transistor. 

However, inherent noise can be significantly reduced through 

proper circuit design, such as changing the circuit structure or 

increasing bias current.

⚫ Only inherent noise will be discussed in the following
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Time-Domain Analysis

⚫ Assumption : All noise signals have a mean value of zero. This 

assumption  is valid in most physical systems.

⚫ Root mean square(rms) voltage value is defined as

Root mean square(rms) current is defined as

Typically, a longer T gives a more accurate rms measurement

⚫ Normalized noise power, pdiss
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Time-Domain Analysis (Cont.)

⚫ Signal-to noise ratio(SNR), dB

◆ Example :  normalized signal power =

normalized noise power  = 

when       , SNR=0dB

⚫ dBm

◆ dB units relate the relative ratio of two power levels

◆ For dBm units, all power levels are referenced by 1mW

➢ Examples : 1mW = 0dBm and 1W = -30dBm

◆ It is common to reference the voltage level to either a 50 or 75

resistor

➢ Example:
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Noise Summation

⚫ Noise sources Vn1(t),Vn2(t),Vn3(t),…….

Total noise Vn0(t)= Vn1(t)+Vn2(t)+Vn3(t)+…

⚫ Example : summation of 2 noise sources

◆ Voltage noises

⚫

◆ Current noises
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Noise Summation (Cont.)

⚫ Correlation coefficient

◆ C = ±1;  the two noise signals are fully correlated

◆ C = 0  ;  the two noise signals are fully uncorrelated

⚫ Typically, different inherent noise sources are uncorrelated

⚫ For two uncorrelated noise signals 

◆ V2
no(rms)=V2

n1(rms)+ V2
n2(rms)

⚫ For two fully correlated noise signals

◆ V2
no(rms)=[Vn1(rms)     Vns(rms)]

2

⚫ To reduce overall noise, concentrate on the reduction of large noise 

signals.
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Frequency-Domain Analysis

⚫ Units of Hz (rather than radians/sec) are commonly used

⚫ Noise spectral density

◆ Periodic signals (e.g. sinusoid) have power at distinct frequency

◆ Random signals have their power spread out over the frequency spectrum

⚫ Example

◆ Time-domain signal

⚫ Spectral density

(vertical axis is a measure of the normalized noise power over 1 Hz bandwidth)
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Frequency-Domain Analysis (Cont.)

⚫ Resolution bandwidth (RBW)

◆ V2/Hz use 1Hz bandwidth → Normalized

◆ Mean-squared value of a random signal at a precise frequency is zero.

◆ Random-noise power must be measured over a specific bandwidth.

Example1: Normalized power between 99.5Hz and 100.5Hz is     

10(v)2---shown in previous page

Example2: Mean-squared value of noise power at 100Hz is 1(v)2

when 0.1Hz is used

Example3: Mean-squared value of noise power at 100Hz is 100(v)2

when 10Hz is used

➢ Mean-squared value measured at 100Hz is directly proportional to 

the bandwidth of the bandpass filter used for measurement

⚫ Total mean-squared power
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Noise Types in CMOS Transistor

⚫ Two major sources

◆ Thermal, or white noise

flat spectrum density

Vn(f)=Vnw is a constant

◆ Flicker, or 1/f noise

➢ Spectrum density is inversely proportional to frequency

Vn
2(f)= KV

2/ f where Kv is a constant.

➢ The intersection of flicker and white noise curves is called 1/f 

noise corner

➢ Spectral density
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f can’t be infinite, could be assumed up to

several hundred GHz for MOSFET. Since,

for very high frequency (1012Hz), other

physical phenomena enter which cause Vn
2

to decrease with increasing frequency

Noise in MOSFET

⚫ Thermal noise (white noise caused by random thermal motion of electron)

◆ Real resistor R

mean square VnT:

k: Boltzmamn’s constant (1.38x10-23JK-1)

T: temperature in Kelvin's

R: the resistance value

f: Bandwidth in which the noise is measured, in Hz 

4kT, at room temperature, is equal to 1.6610−20VC

⚫ MOSFET

◆ If the device is in saturation, then R ≅
2

3gm

➢ VnT
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Noise in MOSFET (Cont.)

⚫ Flicker Noise (1/f)
In an MOS transistor, extra electron energy states

exist at boundary between the Si and SiO2. These can

trap and release electrons from the channel, and hence

introduce noise. Since the process is relatively slow, most of

the noise energy will be at low frequency. 

⚫ Thermal noise + Flicker noise

⚫ The mean squares of the noise currents are added, since the different 

noise mechanisms are statistically independent.

Noise power

f
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Filtered Noise

⚫ Noise amplification and filtering

◆ Spectral density

◆ Root spectral density

(f)Vπf) 2A(j(f)V 2
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Filtered Noise (Cont.)

⚫ The major reasons why filters are used

◆ Attenuated out-of-band power

➢ Avoid interference

➢ Reduce signal swing and slew rate

◆ Adjust in-band gain-phase relationship

⚫ Total output mean-squared value:

⚫ Summation of multiple filtered uncorrelated noise sources

◆ Example : 3 sources
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Noise Bandwidth

⚫ The noise bandwidth of a given filter is equal to the frequency span of a 

brick wall filter that has the same output noise rms value that the given 

filter has when white noise is applied to both filters. (Peak gains are the 

same for the given and brick-wall filters.)

⚫ Example :

◆ A 1st-order lowpass response with a -3 dB bandwidth of fo(Such a 

response would  occur from a RC filter with                 )

◆ Input signal Vni(f)=Vnw (White noise)

➢ For the response

➢ For brick-wall filter with fx bandwidth,

➢ Therefore, noise bandwidth
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⚫ For a RC filter, f0 =
1

2πRC
and  fx =

1

4RC

Noise Bandwidth (Cont.)
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KT/C Noise

⚫ SC sampling circuit

⚫ Circuit noise model

Vi=0 is assumed
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Approximate Noise Calculation

⚫ Piecewise integration of noise

◆ Simplify integration formulas

◆ Integrate noise power in

different frequency regions 

and then add together
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⚫ The noise power in the N4 region is quite close to the total noise power. 

Thus, there is little need to find the noise contributions in N1~N3 regions. 

Such an observation leads us to the 1/f noise tangent principle.

⚫ 1/f noise tangent principle

◆ To determine the frequency region or regions that contribute to dominant 

noise, lower a 1/f noise line until it touches the spectral density curve --- The 

total noise can be approximated by the noise in the vicinity of the 1/f line.

◆ The reason this simple rule works is that a curve proportional to 1/x results 

in equal power over each decade of frequency. Therefore, by lowering this 

constant power/frequency curve, the largest power contribution will touch it 

first.

Approximate Noise Calculation (Cont.)
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Noise Models for Circuit Elements

⚫ Three main noise mechanisms in transistors (BJT & MOSFET)

◆ Thermal noise: White noise

◆ Shot noise (Occurs in pn junctions): White noise

◆ Flicker noise: 1/f noise

⚫ Resistor noise 

◆ Thermal noise is the major noise source

◆ Spectral density VR
2(f) or IR

2(f)

◆ Series voltage noise source: VR
2 f = 4kTR

◆ Parallel current noise source: IR
2 f =

VR
2 f

R2 =
4kT

R

⚫ Diode noise

◆ Shot noise: Vd
2 f = 2kTrd, where rd =

𝜕VD

𝜕ID
=

𝜕

𝜕ID
VTln

ID

IS
=

VT

ID
=

kT

qID

⚫ Capacitors and inductors do not generate noise

⟹ Id
2 f =

Vd
2 f

rd
2 = 2qID
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Noise Models for Circuit Elements (Cont.)

⚫ OPAMPs

◆ Bipolar OPAMP ◆ CMOS OPAMP

(All noise sources are uncorrelated)

(f)V2

n
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Noiseless Noiseless



Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan                                                                 郭泰豪, Analog IC Design, 20256-22

Noise Models for Circuit Elements (Cont.)

Forward(
Biased)
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Noise Models for Circuit Elements (Cont.)

(Active
region)
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Noise Analysis Examples

⚫ OPAMP example

◆ A lowpass filter

◆ Assuming all noise sources are uncorrelated

◆ Using superposition

➢ Vno1
2(f) due to In1(f), Inf(f) and In-(f)

➢ Vno2
2(f) due to In+(f), Vn2(f) and Vn(f)

➢ Vno
2(f) = Vno1

2(f) + Vno2
2(f)

◆ Equivalent noise model

Vi
Vo

R2

Cf

R1 

Rf 
In-

R2

R1

Vn2 Vn In+ 

Vno(f)

Rf 

InfIn1 

Cf 
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Noise Analysis Examples (Cont.)

◆ Vno1
2 (f)

◆ Vno2
2(f)

◆
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⚫ CMOS examples

◆ A differential input stage

◆ Assuming

➢ Q1 and Q2 are identical

➢ Q3 and Q4 are identical

◆

◆

◆

Noise Analysis Examples (Cont.)
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Noise Analysis Examples (Cont.)

⚫ Since (3) is relative small compared to the others, it can be ignored.

◆

◆ Equivalent input noise

◆ For the white noise portion, i.e. thermal noise
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Power Supply Rejection Ratio (PSRR)

⚫ The ratio of the differential gain Av to the gain from the power-supply 

ripple to the output with the differential input set to zero

⚫ Method for calculating the PSRR of common source amplifier

ddout

inout

vv

vv
PSRR =

Ideal current source

Ibias is constant

➔Vbias is constant

VDD

Gnd

Vout

CL

M3

M5

M2

M1 M4

Ibias

Vin

Vbias

vdd
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Power Supply Rejection Ratio (Cont.)

⚫ Small signal model of common source amplifier

⚫ vout / vdd transfer function derivation

𝑪𝒏 = 𝑪𝒈𝒔𝟐 + 𝑪𝒈𝒔𝟑 + 𝑪𝒅𝒃𝟐
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Appendix - Noise Analysis Examples

⚫ gm1  should be made as large as possible to minimize

◆ For flicker (1/f) noise portion
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Appendix - Noise Analysis Examples (Cont.)

⚫ Recall that the first term in (9.109)1 is due to the p-channel input 

transistors, Q1 and Q2, and the second term is due to the n-channel 

loads, Q3 and Q4 . We note some points for 1/f noise here:

◆ For L1=L3 , the noise of the n-channel loads dominate since             

and typically n-channel transistors have larger 1/f noise than p-

channel transistors (i.e. , K3 > K1).

◆ Taking L3 longer greatly helps due to the inverse squared 

relationship in the second term of (9.109)1. This limits the signal 

swings somewhat, but it may be a reasonably trade-off where low 

noise is important.

◆ The input noise is independent of W3, and therefore we can make it 

large to maximize signal swing at the output.

◆ Taking W1 wider also helps to minimize 1/f noise. (Recall  that it 

helps white noise, as well.)

pn 
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Appendix - Noise Analysis Examples (Cont.)

◆ Taking L1 longer increases the noise because the second term in 

(9.109)1 is dominant. Specifically, this decreases the input-referred 

noise of the p-channel drive transistors , which are not the dominate 

noise sources, but it also increases the input-referred noise of the n-

channel load transistors, which are the dominant noise sources !

Total rms input noise, Vneq(rms.)
2 , integrated from f1 to f2.

 df )f(V)f(VV
2

1

f

f
ker)flic(neq)thermal(neq

2

)rms(neq  +=

)ff)](
g

1
()

g

g
(kT

3

16
)

g

1
(kT

3

16
[ 12

3m

2

1m

3m

1m

−+=

)]
Lw

L
)((a

Lw

a
[2

2

31

1

p

n
n

11

p




++

1

2

ox

i
i

f

f
ln

c

k
a    where     ; =

APP6-3

1P.394 in the textbook


